

PII: S0277-5387(97)00032-6

## Redox potentials of a series of bis(2,4pentanedionato)cobalt(III) complexes containing amine, phosphine, arsine, or their hybrid donor didentate ligands. $\sigma$ and $\pi$ Contributions in the Co<sup>III</sup>—N, —P and —As bonding

Masakazu Kita<sup>a</sup>† and Kazuo Kashiwabara<sup>b</sup>

<sup>a</sup> Chemistry Department, Naruto University of Education, Takashima, Naruto 772, Japan

<sup>b</sup> Department of Chemistry, Faculty of Science, Nagoya University, Nagoya 464-01, Japan

(Received 22 October 1996; accepted 14 January 1997)

Abstract—Reduction  $(E_{1/2}(\text{red}))$  and oxidation potentials  $(E_{1/2}(\text{ox}))$  of  $[\text{Co}(\text{acac})_2(\text{L})]^+$  (acac = 2,4-pentanedionate) complexes containing an N—N, N—N', N'—N', N—P, P—P, N—As, or As—As' didentate ligand as  $L(N = -CH_2NH_2; N' = -CH_2NMe_2; P = --CH_2PMe_2; As = --CH_2AsMe_2; As' = --CH_2CH_2AsMe_2)$ were determined by electrochemical measurements. The  $E_{1/2}(\text{red})$  values which reflect the  $d\sigma^*(\text{Co})$  orbital (homo) energy shift negatively in the following order: (i) L = N'-N' > N'-N > N-N; (ii) L = N'-N > As-N > P-N; and (iii) L = N'-N' > As-As' > P-P. The  $E_{1/2}(\text{ox})$  values shift positively in the following order: L = P-P, As-As' < P-N, As-N < N-N, N'-N'. This order suggests that the  $d\pi(\text{Co})$  orbital is more destabilized by the phosphine or arsine ligands than the amine ones. (i) 1997 Elsevier Science Ltd

*Keywords*: redox potentials of Co<sup>III</sup> complexes;  $\sigma$  and  $\pi$  contributions; Co<sup>III</sup>—N, —P and —As bonding; trans influence; geometry of donor groups; ligand field strength.

We have been interested in cobalt(III)-phosphine complexes which are composed of typical Lewis hard acid and soft bases, and the molecular structures of  $[Co(acac)_2(Me_3XCH_3CH_3NH_2)]ClO_4$  (X = N, P or As) were reported in a previous paper [1]. These complexes are different only in the X of 5B(15) group atoms, and they give a suitable system for comparative studies on the coordination properties of these 5B donor groups towards a Co<sup>III</sup> ion (bond distances and angles, their *trans* influences, bonding properties etc). We have also reported the redox potentials of cobalt-(III) mixed-ligand complexes with sulfur, phosphorous, and nitrogen donor atoms, and a good linear relationship was observed between the potential difference,  $[E_{1/2}(ox)-E_{1/2}(red)]$  and the first d-d transition energies of the complexes [2]. The linear relationship suggests that the  $E_{1/2}(ox)$  and  $E_{1/2}(red)$ 

† Author to whom correspondence should be addressed.

values nicely reflect the orbital energies of  $d\sigma^*(\text{Co})$  (lumo) and  $d\pi(\text{Co})$  (homo), respectively.

Here, we report the electrochemical investigations for seven cobalt(III) complexes containing amine, phosphine and arsine donor ligands to examine the bonding nature between the  $-XMe_2(X = N, P, or$ As) donor groups and the Co<sup>III</sup> center. The present results will give a quantitative estimation for the  $\sigma$ and  $\pi$  contributions in the cobalt<sup>III</sup>-amine. -phosphine and -arsine complexes.

## **EXPERIMENTAL**

The complexes measured were prepared by the literature methods:  $[Co(acac)_2(L)]ClO_4(L = N' - N [3], N - N' [3], N' - N' [3], P - N [4], P - P [5], As - N [6] and As - As' [7]. The rotating disk electrode (RDE) voltammetry employed in the present study were recorded with the same apparatus and in the$ 

same manner as described previously [2]. Absorption spectra in CH<sub>3</sub>CN solutions were measured on a Hitachi U3400 spectrophotometer. The optimal geometries of free  $X(CH_3)_3$  (X = N, P, and As) were determined by RHF calculations using the Mulliken program [8] (for X = N and P with 6-31G\*, and for X = As with STO-3G basis sets).

## **RESULTS AND DISCUSSION**

Table 1 shows the  $E_{1/2}(\text{red})$  and  $E_{1/2}(\text{ox})$  values and the first d-d transition energies for seven [Co  $(\operatorname{acac})_2$ L)]ClO<sub>4</sub> complexes. The quasi-reversible waves with small  $(E_{3/4}-E_{1/4})$  values on oxidation or  $(E_{1/4}-E_{3/4})$  ones on reduction were obtained by RDE voltammetry technique. Although the observed (apparent) first d-d bands of some phosphine and arsine complexes are split as indicated, the lower component or the apparent peak energies are approximately same as the differences  $\Delta E(\text{redox})$  $(\equiv e[E_{1/2}(\text{ox}) - E_{1/2}(\text{red})])$  for the present cobalt(III) complexes.

Figure 1 shows the visualization of the  $E_{1/2}(ox)$  and  $E_{1/2}$ (red) values of the complexes which are grouped into three; a, b, and c. The  $E_{1/2}$  (red) values in Fig. 1(a) dramatically decrease by the stepwise substitutions from  $-NH_2$  to  $-NMe_2$ , which indicates that the  $\sigma$ -type interaction of the ligands with the Co center is much greater in the primary amine than the tertiary one. The weakening of such an amine's  $\sigma$ donation ability by substituting with a methyl group may be caused by the steric effect. On the other hand, the  $E_{1/2}(ox)$  values in Fig. 1(a) are invariant, which suggests that the  $d\pi(Co)$  orbital energy is not changed whichever the amine type is primary or tertiary. Thus, no  $\pi$  interaction between  $d\pi(Co)$  and the aliphatic amines exist; the  $d\pi$ (Co) orbital being essentially nonbonding to the aliphatic amines. The decrease of the first d-d band energies of the cobalt(III) complexes with the substitution from  $-NH_2$  to  $-NMe_2$  is well known [3], and now we clarify it visually; it is mainly caused by the decrease of the  $\sigma$  interaction of amines with the Co<sup>III</sup> center.

The  $E_{1/2}(\text{ox})$  and  $E_{1/2}(\text{red})$  values of  $[\text{Co}(\text{acac})_2$  $(Me_2XCH_2CH_2NH_2)]ClO_4$  (X = N, P, or As), are shown in Fig. 1(b). The first d-d transition bands around 20000 cm<sup>-1</sup> are shifted as the following order :  $X = P (20200 \text{ cm}^{-1}) > As (18700 \text{ cm}^{-1}) > N (17700 \text{ cm}^{-1})$  $cm^{-1}$ ). The *trans* influence in their crystal structures, which can be defined as the difference between the bond distances of the Co-O trans to X and the Co-O trans to O, decreases in the following order: X = P (0.076(11) Å) > As (0.041(4) Å) > N (0.015(6) Å) [1]. This order is coincident with the  $E_{1/2}$ (red) order of the complexes: X = P (-1.04 V) < As(-0.86 V) < N(-0.78 V). Since the  $E_{1/2}$ (red) value reflects the  $d\sigma^*(Co)$  orbital energy, the agreement between the trans influence order and the  $E_{1/2}$  (red) one demonstrates that both the orders are associated with the  $\sigma$  interaction between the -XMe<sub>2</sub> group and the Co<sup>III</sup> center. The change of the  $E_{1/2}$  (red) values of the complexes in Fig. 1(c), which contain a symmetrical X-X ligand, becomes approximately twice to the corresponding ones in Fig. 1(b): X = P(-1.16 V) < As(-0.86 V) < N(-0.69 V) as shown in Fig. 1(c). Our consideration on the  $\sigma$  interaction is confirmed by this observation: the changes in Fig. 1(c) are approximately twice those in Fig. 1(b).

The RHF calculation (Mulliken) gives that the  $\sigma$  donor orbital of X(CH<sub>3</sub>)<sub>3</sub> with a symmetry under  $C_{3v}$  assumption is destabilized as the following order: -9.4 eV for X = N < -8.8 eV for X = P < -6.9 eV for X = As and the orbitals are visualized in Fig. 2(a) which shows that the molecular orbital isosurface with 0.1 value expands in the order : N < P < As. The magnitude of the  $\sigma$  interaction estimated by the electrochemistry is not in agreement with the trend of the calculated orbital energies. It could cause such a disagreement to the large covalent radius (and the expanding cloud) of As atom and/or the strong  $\pi$  repulsion between  $d\pi$ (Co) and the filled  $\pi$ -type orbitals of As(CH<sub>3</sub>)<sub>3</sub> as is mentioned in the following section.

The  $E_{1/2}(\text{ox})$  values which reflect the  $d\pi(\text{Co})$  orbital energy of the complexes decrease in the following order: X = N (1.41 V) > P(1.29 V)  $\ge$  As (1.26 V) in

Table 1. Redox potentials of  $[Co(acac)_2L]ClO_4$  (L = N—N, N—N', N'—N', N—P, P—P, N—As, As—As' (see text)) and their first d-d transition energies

|                                       |       |       |       |                      | ·····                |       |                      |
|---------------------------------------|-------|-------|-------|----------------------|----------------------|-------|----------------------|
|                                       | N—N   | NN'   | N′—N′ | N—P                  | PP                   | N—As  | As—As'               |
| $E_{1/2}(\text{ox})$ (V)              | 1.41  | 1.41  | 1.44  | 1.29                 | 1.20                 | 1.26  | 1.21                 |
| $E_{3.4} - E_{1/4} (\mathrm{mV})$     | 90    | 70    | 60    | 60                   | 60                   | 80    | 70                   |
| $i_1 \text{ (mA mmol}^{-1}\text{)}$   | 101   | 102   | 104   | 88                   | 70                   | 129   | 73                   |
| $E_{1/2}(\text{red})$ (V)             | -0.95 | -0.78 | -0.69 | -1.04                | -1.16                | -0.86 | -0.86                |
| $E_{1/4} - E_{3/4} (\mathrm{mV})$     | 110   | 120   | 115   | 101                  | 80                   | 110   | 90                   |
| $i_1 (\text{mA mmol}^{-1})$           | 69    | 81    | 75    | 74                   | 87                   | 73    | 60                   |
| $\Delta E(\text{redox}) \text{ (eV)}$ | 2.36  | 2.19  | 2.13  | 2.33                 | 2.36                 | 2.12  | 2.07                 |
| $\sigma d - d^a$ (eV)                 | 2.29  | 2.19  | 2.06  | 2.08 <sup>sh</sup> , | 2.39 <sup>sh</sup> , | 2.32  | 2.17 <sup>sh</sup> , |
|                                       |       |       |       | 2.51                 | 2.90 <sup>sh</sup>   |       | 2.47                 |

<sup>a</sup> The apparent peaks or shoulders in the first d-d transition region. sh: shoulder.



Fig. 1. Visualizing the trend of redox potentials of the three series of  $[Co(acac)_2(X-Y)]^+$ . In a series the change of  $-E_{1/2}(red)$  or  $-E_{1/2}(ox)$  values with opposite sign corresponds to the change of LUMO or HOMO orbital energies, respectively.

(a) **a**-type orbital ( $C_{3v}$  symmetry)



(b) one component of e-type orbitals ( $C_{3v}$  symmetry)



Fig. 2. Visualizing a and e orbitals of  $X(CH_3)_3(X = N, P, and As)$  by Mulliken treatment.

2773

Fig. 1(b) and  $X = N (1.44 V) > As (1.21 V) \ge P (1.20 V)$ V) in Fig. 1(c). The orders suggest that the  $d\pi(Co)$ orbitals of the phosphine and arsine complexes are more destabilized than those of the amine ones. In other words, the phosphine and arsine ligands act as a  $\pi$  donor to the Co<sup>III</sup> ion. On the basis of the angular overlap model (AOM) treatment for the electronic spectra of the cobalt(III)-phosphine complexes, we obtained similar results [9]. The phosphine and arsine ligands have a filled  $\pi$ -type molecular orbital (e symmetry under  $C_{3v}$  approximation) composed of three P—C (or As—C)  $\sigma$ -bonds as shown in Fig. 2(b), which shows that the separation between the positive and negative area increases in the order : N < P < As. The filled  $\pi$ -type orbitals labeled e symmetry of the phosphine and arsine ligands can interact repulsively with the filled  $d\pi(Co)$  orbitals. The destabilization, however, is overcome by the strong  $\sigma$ -interaction mentioned above to give the strong ligand field of the -PMe<sub>2</sub> group. The strong covalency between the -PMe<sub>2</sub> group and a Co<sup>III</sup> ion has been claimed in spectroscopic studies on a series of cobalt(III)-phosphine complexes [10, 11].

The energies of the occupied MOs of free XMe<sub>3</sub> obtained by Mulliken calculations are listed in Table 2 with the observed (by crystallography) and calculated geometrical parameters (by the Mulliken treatment). The a and e orbitals are shown in Fig. 2. The calculated optimal geometries by the Mulliken treatment for free  $XMe_3(X = N, P, and As)$  species are fairly coincident with the observed structural parameters in  $[Co(acac)_2(Me_2XCH_2CH_2NH_2)]ClO_4(X = N, P, and$ As) complexes. Either the observed or the calculated bond distances of X-C are well coincident with the sum of covalent radii of X and C atoms, and increases in the order X = N > P > As. Both of the crystallographic and theoretical bond angles C-X-C decreases in the order X = N > P > As. These tendencies, which are well-known in VSEPR consideration

[12] demonstrate the decrease of the electronegativity of the X atom and the increase of the p(X atom)character on the X-C bonds. The increase on the p(X atom) character of the X-C bonds is more comfortable for the  $\pi$  interaction between  $d\pi$ (Co) orbitals and the  $\pi$ -type filled XMe<sub>3</sub> molecular orbitals with e symmetry (under  $C_{3v}$  assumption). The energies of the e orbitals of XMe<sub>3</sub> are -13.6 eV for X = N, -12.3 eV for X = P, and -10.5 eV for X = As. The order of the e orbital energies is N < P < As, which is similar to the order of the  $E_{1/2}(ox)$  values  $(N < P \le As)$  as shown in Figs. 1(a), (b), and (c). Here, it should be but we could not consider the magnitude of the orbital overlapping. The calculated energies of the unoccupied e\* orbitals which have an X-C antibonding character are +8.1 eV for X = N, +5.5eV for X = P, and +11.6 eV for X = As. The Mulliken treatment suggests that the ability of  $\pi$ -back donation increases in the order: As < N < P. However, such a phenomenon of the  $\pi$ -back donation is not observed on the  $E_{1/2}(ox)$  values. Then we presume that the  $\pi$ -back donating interaction is negligible between the  $-XMe_2$  groups and a Co<sup>III</sup> ion.

Now we can demonstrate quantitatively that the electrochemical measurements for well-tailored complexes reveal the  $\sigma$  and  $\pi$  interactions between ligands and central metal atoms.

Acknowledgements—We thank Grants-in-Aid for Scientific Research No. 08640709, Developmental Scientific Research No. 07554061 and Scientific Research on Priority Areas No. 08220230 from the Ministry of Education, Science and Culture.

## REFERENCES

 Kita, M., Nemoto, K., Kashiwabara, K., Fujita, J., Gotoh, M., Miyamoto, T. and Ohba, S., *Bull. Chem. Soc. Jpn*, 1993, **66**, 1687.

| Calc. 101                             |                      | Calc for                            |                                         | Calc for                              |                                |                                                                                                                             |
|---------------------------------------|----------------------|-------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| As free AsMe <sub>3</sub>             | X = As               | free PMe <sub>3</sub>               | $\mathbf{X} = \mathbf{P}\left[1\right]$ | free NME <sub>3</sub>                 | X = N[1]                       |                                                                                                                             |
| .30                                   | 2.30                 |                                     | 2.24                                    |                                       | 2.02                           | X—Co (Å)                                                                                                                    |
| .93 1.93                              | 1.93                 | 1.85                                | 1.82                                    | 1.45                                  | 1.53                           | X—C (Å)                                                                                                                     |
| .99                                   | 1.99                 |                                     | 1.87                                    |                                       | 1.52                           | X—C $(\Sigma r_{cov})^a$ (Å)                                                                                                |
| .2 97.2                               | 106.2                | 100.0                               | 108.3                                   | 111.9                                 | 109.5                          | C—X—C (°)                                                                                                                   |
| .4                                    | 112.4                |                                     | 110.6                                   |                                       | 109.8                          | Co—X—C (°)                                                                                                                  |
| -6.9                                  |                      | -8.8                                |                                         | -9.4                                  |                                | $E(\mathbf{a})^{b}$ (eV)                                                                                                    |
| - 10.5                                |                      | -12.3                               |                                         | -13.6                                 |                                | $E(\mathbf{e})^c$ (eV)                                                                                                      |
| 11.6                                  |                      | 5.5                                 |                                         | 8.1                                   |                                | $E(\mathbf{e^*})^d$ (eV)                                                                                                    |
| · · · · · · · · · · · · · · · · · · · | 1<br>1<br>106<br>112 | 1.85<br>100.0<br>8.8<br>12.3<br>5.5 | 1.82<br>1.87<br>108.3<br>110.6          | 1.45<br>111.9<br>-9.4<br>-13.6<br>8.1 | 1.53<br>1.52<br>109.5<br>109.8 | $X - C (Å)  X - C (\Sigma r_{cov})^{a} (Å)  C - X - C (°)  Co - X - C (°)  E(a)^{b} (eV)  E(e)^{c} (eV)  E(e^{*})^{d} (eV)$ |

Table 2. Selected bond distances (Å) and angles (°) of  $[Co(acac)_{2}{NH_{2}CH_{2}CH_{2}X(CH_{3})_{2}}]ClO_{4}(X = N, P, and As)$  [1], and calculated optimal geometry and orbital energies by Mulliken for free  $X(CH_{3})_{3}$  species

"The sum of covalent radii of X and C was obtained from Huheey, J. E., *Inorganic Chemistry*, 3rd ed., Harper and Row Publishers, Inc, 1983.

<sup>b</sup>  $E(\mathbf{a})$  denotes the energy of the occupied  $\sigma$ -type MO of XMe<sub>3</sub> with  $\mathbf{a}$  symmetry ( $C_{3v}$ ).

<sup>c</sup>  $E(\mathbf{e})$  denotes the energy of the occupied  $\pi$ -type MO of XMe<sub>3</sub> with  $\mathbf{e}$  symmetry ( $C_{3\nu}$ ).

<sup>d</sup>  $E(\mathbf{e^*})$  denotes the energy of the unoccupied  $\pi$ -type MO of XMe<sub>3</sub> with  $\mathbf{e^*}$  symmetry ( $C_{3v}$ ).

- 2. Okuno, M., Kita, M., Kashiwabara, K. and Fujita, J., Chem. Lett., 1989, 1643.
- 3. Ouyang, Y., Kojima, M. and Fujita, J., Bull. Chem. Soc. Jpn, 1984, 57, 3574.
- Kashiwabara, K., Kinoshita, I., Ito, T., Fujita, J., Shibata, M., Bull. Chem. Soc. Jpn, 1982, 55, 725.
- 5. Kashiwabara, K., Katoh, K., Ohishi, T. and Fujita, J., *Bull. Chem. Soc. Jpn*, 1982, **55**, 149.
- Nemoto, K., Kita, M., Kojima, M. and Fujita, J., Bull. Chem. Soc. Jpn, 1989, 62, 1517.
- Iwata, K., Kojima, M. and Fujita, J., Bull. Chem. Soc. Jpn, 1985, 58, 3003.
- Mulliken (version 1.1.1), IBM and CAChe Scientific, 1994. The calculations were carried out on an SGI workstation (Indigo) at the Information Processing Center of the Naruto University of Education.
- Kita, M., Okuyama, A., Kashiwabara, K. and Fujita, J., *Bull. Chem. Soc. Jpn*, 1990, 63, 1994.
- Kinoshita, I., Kashiwabara, K., Fujita, J., Matsumoto, K. and Ooi, S., Bull. Chem. Soc. Jpn, 1981, 54, 2683.
- 11. Ohishi, T., Kashiwabara, K. and Fujita, J., Bull. Chem. Soc. Jpn, 1983, 56, 3441.
- 12. Gillespie, R. J., Chem. Soc. Rev., 1992, 59.