

PII : S0277-5387(97)00032-6

Redox potentials of a series of bis(2,4 pentanedionato)cobalt(llI) complexes containing amine, phosphine, arsine, or their hybrid donor didentate ligands. σ and π Contributions in the $Co^{III} - N$, $-P$ and $-As$ bonding

Masakazu Kita^a† and Kazuo Kashiwabara^b

"Chemistry Department, Naruto University of Education, Takashima, Naruto 772, Japan

b Department of Chemistry, Faculty of Science, Nagoya University, Nagoya 464-01, Japan

(Received 22 October 1996; accepted 14 January 1997)

Abstract--Reduction ($E_{1/2}$ (red)) and oxidation potentials ($E_{1/2}(\alpha x)$) of [Co(acac)₂(L)]⁺ (acac = 2,4-pentanedionate) complexes containing an N--N, N--N'. N'--N', N--P, P--P, N--As, or As--As' didentate ligand as $L(N = -CH_2NH_2; N' = -CH_2NMe_2; P = -CH_2PMe_2; As = -CH_2AsMe_2; As' = -CH_2CH_2AsMe_2$ were determined by electrochemical measurements. The $E_{1/2}$ (red) values which reflect the $d\sigma^*(C_0)$ orbital (homo) energy shift negatively in the following order: (i) $L = N' - N' > N' - N > N - N$; (ii) $\hat{L} = N' - N > A_s - N > P - N$; and (iii) $L = N' - N' > A_s - A_s' > P - P$. The $E_{1/2}(\text{ox})$ values shift positively in the following order: $L = P-P$, $As-As' < P-N$, $As-N < N-N$, $N-N'$, $N'-N'$. This order suggests that the $d\pi(Co)$ orbital is more destabilized by the phosphine or arsine ligands than the amine ones. \odot 1997 Elsevier Science Ltd

Keywords: redox potentials of Co^{III} complexes ; σ and π contributions ; Co^{III}—N, —P and —As bonding ; trans influence ; geometry of donor groups ; ligand field strength.

We have been interested in cobalt(III)-phosphine complexes which are composed of typical Lewis hard acid and soft bases, and the molecular structures of $[Co(acac)_{2}(Me, XCH, CH, NH_{2})]ClO_{4}$ (X = N, P or As) were reported in a previous paper [1]. These complexes are different only in the X of 5B(15) group atoms, and they give a suitable system for comparative studies on the coordination properties of these 5B donor groups towards a Co^{III} ion (bond distances and angles, their *trans* influences, bonding properties etc). We have also reported the redox potentials of cobalt- (Ill) mixed-ligand complexes with sulfur, phosphorous, and nitrogen donor atoms, and a good linear relationship was observed between the potential difference, $[E_{1/2}(\text{ox})-E_{1/2}(\text{red})]$ and the first $d-d$ transition energies of the complexes [2]. The linear relationship suggests that the $E_{1/2}$ (ox) and $E_{1/2}$ (red)

t Author to whom correspondence should be addressed.

values nicely reflect the orbital energies of $d\sigma^*(\text{Co})$ (lumo) and $d\pi(Co)$ (homo), respectively.

Here, we report the electrochemical investigations for seven cobalt(III) complexes containing amine, phosphine and arsine donor ligands to examine the bonding nature between the $-XMe₂(X = N, P, or$ As) donor groups and the Co^{III} center. The present results will give a quantitative estimation for the σ and π contributions in the cobalt^{III}-amine. -phosphine and -arsine complexes.

EXPERIMENTAL

The complexes measured were prepared by the literature methods: $[Co(acac),(L)]ClO₄(L = N'-N)$ $[3]$, N--N' $[3]$, N'--N' $[3]$, P--N $[4]$, P--P $[5]$, As--N [6] and As-As' [7]. The rotating disk electrode (RDE) voltammetry employed in the present study were recorded with the same apparatus and in the same manner as described previously [2]. Absorption spectra in $CH₃CN$ solutions were measured on a Hitachi U3400 spectrophotometer. The optimal geometries of free $X(CH_3)$ $(X = N, P,$ and As) were determined by RHF calculations using the Mulliken program [8] (for $X = N$ and P with 6-31G^{*}, and for $X = As$ with STO-3G basis sets).

RESULTS AND DISCUSSION

Table 1 shows the $E_{1/2}$ (red) and $E_{1/2}$ (ox) values and the first $d-d$ transition energies for seven $[Co]$ $(\text{acac})_2L)$]ClO₄ complexes. The quasi-reversible waves with small $(E_{3/4}-E_{1/4})$ values on oxidation or $(E_{1/4}-E_{3/4})$ ones on reduction were obtained by RDE voltammetry technique. Although the observed (apparent) first *d-d* bands of some phosphine and arsine complexes are split as indicated, the lower component or the apparent peak energies are approximately same as the differences $\Delta E(\text{redox})$ $(= e[E_{1/2}(ox) - E_{1/2}(red))]$ for the present cobalt(III) complexes.

Figure 1 shows the visualization of the $E_{1/2}$ (ox) and $E_{1/2}$ (red) values of the complexes which are grouped into three; a, b, and c. The $E_{1/2}$ (red) values in Fig. l(a) dramatically decrease by the stepwise substitutions from $-NH_2$ to $-NMe_2$, which indicates that the σ -type interaction of the ligands with the Co center is much greater in the primary amine than the tertiary one. The weakening of such an amine's σ donation ability by substituting with a methyl group may be caused by the steric effect. On the other hand, the $E_{1/2}$ (ox) values in Fig. 1(a) are invariant, which suggests that the $d\pi(Co)$ orbital energy is not changed whichever the amine type is primary or tertiary. Thus, no π interaction between $d\pi$ (Co) and the aliphatic amines exist; the $d\pi$ (Co) orbital being essentially nonbonding to the aliphatic amines. The decrease of the first $d-d$ band energies of the cobalt(III) complexes with the substitution from $-NH_2$ to $-NMe_2$ is well known [3], and now we clarify it visually ; it is mainly caused by the decrease of the σ interaction of amines with the Co^{III} center.

The $E_{1/2}$ (ox) and $E_{1/2}$ (red) values of [Co(acac)₂ $(Me₂XCH₂CH₂NH₂)[ClO₄ (X = N, P, or As), are$ shown in Fig. 1 (b). The first *d-d* transition bands around 20 000 cm $^{-1}$ are shifted as the following order : $X = P (20200 \text{ cm}^{-1}) > As (18700 \text{ cm}^{-1}) > N (17700$ cm^{-1}). The *trans* influence in their crystal structures, which can be defined as the difference between the bond distances of the Co--O *trans* to X and the Co-O *trans* to O, decreases in the following order: $X = P$ (0.076(11) \hat{A}) > As (0.041(4) \hat{A}) > N $(0.015(6)$ Å) [1]. This order is coincident with the $E_{1/2}$ (red) order of the complexes: $X = P$ (-1.04 V) < As(-0.86 V) < N(-0.78 V). Since the $E_{1/2}$ (red) value reflects the $d\sigma^*(\text{Co})$ orbital energy, the agreement between the *trans* influence order and the $E_{1/2}$ (red) one demonstrates that both the orders are associated with the σ interaction between the $-XMe$? group and the Co^{III} center. The change of the $E_{1/2}(\text{red})$ values of the complexes in Fig. l(c), which contain a symmetrical X —X ligand, becomes approximately twice to the corresponding ones in Fig. 1(b): $X = P$ $(-1.16 \text{ V}) <$ As $(-0.86 \text{ V}) <$ N (-0.69 V) as shown in Fig. 1(c). Our consideration on the σ interaction is confirmed by this observation: the changes in Fig. $1(c)$ are approximately twice those in Fig. $1(b)$.

The RHF calculation (Mulliken) gives that the σ donor orbital of $X(CH_3)$, with a symmetry under C_{3y} assumption is destabilized as the following order: -9.4 eV for X = N < -8.8 eV for X = P < -6.9 eV for $X = As$ and the orbitals are visualized in Fig. 2(a) which shows that the molecular orbital isosurface with 0.1 value expands in the order : $N < P < As$. The magnitude of the σ interaction estimated by the electrochemistry is not in agreement with the trend of the calculated orbital energies. It could cause such a disagreement to the large covalent radius (and the expanding cloud) of As atom and/or the strong π repulsion between $d\pi(Co)$ and the filled π -type orbitals of $As(CH_3)$, as is mentioned in the following section.

The $E_{1/2}$ (ox) values which reflect the $d\pi$ (Co) orbital energy of the complexes decrease in the following order : $X = N$ (1.41 V) > P(1.29 V) \ge As (1.26 V) in

Table 1. Redox potentials of $[Co(acac)_2L]ClO_4$ ($L = N-N, N-N', N'-N', N-P, P-P, N—As, As—As' (see text)$) and their first $d-d$ transition energies

	$N-N$	$N-N'$	N' — N'	$N-P$	$P-P$	$N - As$	$As-As'$
$E_{1/2}$ (ox) (V)	1.41	1.41	1.44	1.29	1.20	1.26	1.21
$E_{3.4}-E_{1/4}$ (mV)	90	70	60	60	60	80	70
i_1 (mA mmol ⁻¹)	101	102	104	88	70	129	73
$E_{1/2}$ (red) (V)	-0.95	-0.78	-0.69	-1.04	-1.16	-0.86	-0.86
$E_{1/4} - E_{3/4}$ (mV)	110	120	115	101	80	110	90
i_1 (mA mmol ⁻¹)	69	81	75	74	87	73	60
$\Delta E(\text{redox})$ (eV)	2.36	2.19	2.13	2.33	2.36	2.12	2.07
σd - d^a (eV)	2.29	2.19	2.06	2.08 sh,	2.39 sh.	2.32	$2.17sh$.
				2.51	2.90 ^{sh}		2.47

^aThe apparent peaks or shoulders in the first $d-d$ transition region, sh : shoulder.

Fig. 1. Visualizing the trend of redox potentials of the three series of $[Co(acac)₂(X-Y)]$ ⁺. In a series the change of $-E_{1/2}$ (red) or $-E_{1/2}$ (ox) values with opposite sign corresponds to the change of LUMO or HOMO orbital energies, respectively.

(a) a-type orbital $(C_{3v}$ symmetry)

(b) one component of e-type orbitals $(C_{3v}$ symmetry)

Fig. 2. Visualizing a and e orbitals of $X(CH_3)_3(X = N, P,$ and As) by Mulliken treatment.

Fig. 1(b) and $X = N(1.44 V) > As(1.21 V) \ge P(1.20)$ V) in Fig. 1(c). The orders suggest that the $d\pi(Co)$ orbitals of the phosphine and arsine complexes are more destabilized than those of the amine ones. In other words, the phosphine and arsine ligands act as a π donor to the Co^{III} ion. On the basis of the angular overlap model (AOM) treatment for the electronic spectra of the cobalt(III)-phosphine complexes, we obtained similar results [9]. The phosphine and arsine ligands have a filled π -type molecular orbital (e symmetry under C_{3v} approximation) composed of three P-C (or As-C) σ -bonds as shown in Fig. 2(b), which shows that the separation between the positive and negative area increases in the order : $N < P < As$. The filled π -type orbitals labeled e symmetry of the phosphine and arsine ligands can interact repulsively with the filled $d\pi(Co)$ orbitals. The destabilization, however, is overcome by the strong σ -interaction mentioned above to give the strong ligand field of the $-Me₂$ group. The strong covalency between the $-Me₂$ group and a Co^{III} ion has been claimed in spectroscopic studies on a series of cobalt(III)-phosphine complexes [10, 11].

The energies of the occupied MOs of free $XMe₃$ obtained by Mulliken calculations are listed in Table 2 with the observed (by crystallography) and calculated geometrical parameters (by the Mulliken treatment). The a and e orbitals are shown in Fig. 2. The calculated optimal geometries by the Mulliken treatment for free $XMe₃(X = N, P, and As)$ species are fairly coincident with the observed structural parameters in $[Co(acac)₂(Me₂XCH₂CH₂NH₂)]ClO₄(X = N, P, and$ As) complexes. Either the observed or the calculated bond distances of $X-C$ are well coincident with the sum of covalent radii of X and C atoms, and increases in the order $X = N > P > As$. Both of the crystallographic and theoretical bond angles $C - X - C$ decreases in the order $X = N > P > As$. These tendencies, which are well-known in VSEPR consideration [12] demonstrate the decrease of the electronegativity of the X atom and the increase of the $p(X \text{ atom})$ character on the X--C bonds. The increase on the $p(X \text{ atom})$ character of the X-C bonds is more comfortable for the π interaction between $d\pi(Co)$ orbitals and the π -type filled XMe₃ molecular orbitals with e symmetry (under C_{3v} assumption). The energies of the e orbitals of XMe₃ are -13.6 eV for $X = N$. -12.3 eV for $X = P$, and -10.5 eV for $X = As$. The order of the e orbital energies is $N < P < As$, which is similar to the order of the $E_{1/2}(\text{ox})$ values $(N < P \le As)$ as shown in Figs. 1(a), (b), and (c). Here, it should be but we could not consider the magnitude of the orbital overlapping. The calculated energies of the unoccupied e^* orbitals which have an $X-C$ antibonding character are $+8.1$ eV for $X = N$, $+5.5$ eV for $X = P$, and $+11.6$ eV for $X = As$. The Mulliken treatment suggests that the ability of π -back donation increases in the order: $As < N < P$. However, such a phenomenon of the π -back donation is not observed on the $E_{1/2}$ (ox) values. Then we presume that the π -back donating interaction is negligible between the $-XMe₂$ groups and a Co^{III} ion.

Now we can demonstrate quantitatively that the electrochemical measurements for well-tailored complexes reveal the σ and π interactions between ligands and central metal atoms.

Acknowledgements--We thank Grants-in-Aid for Scientific Research No. 08640709, Developmental Scientific Research No. 07554061 and Scientific Research on Priority Areas No. 08220230 from the Ministry of Education, Science and Culture.

REFERENCES

1. Kita, M., Nemoto, K., Kashiwabara, K., Fujita, J., Gotoh, M., Miyamoto, T. and Ohba, S., *Bull. Chem. Soc. Jpn,* 1993, 66, 1687.

	$X = N[1]$	Calc. for free NME,	$X = P[1]$	Calc. for free $PMe3$	$X = As$	Calc. for free AsMe ₁
X—Co (Å)	2.02		2.24		2.30	
$X=C(A)$	1.53	1.45	1.82	1.85	1.93	1.93
$X-C (\Sigma r_{cov})^a (\text{\AA})$	1.52		1.87		1.99	
$C - X - C$ (\degree)	109.5	111.9	108.3	100.0	106.2	97.2
$Co-X-C$ ($^{\circ}$)	109.8		110.6		112.4	
$E(\mathbf{a})^b$ (eV)		-9.4		-8.8		-6.9
$E(e)$ ^c (eV)		-13.6		-12.3		-10.5
$E(e^*)^d$ (eV)		8.1		5.5		11.6

Table 2. Selected bond distances (A) and angles (°) of $[Co(acac)_2\{NH,CH,CH,ZCH_3\}_2\}[ClO_4(X = N, P, and As)]$ [1], and calculated optimal geometry and orbital energies by Mulliken for free $X(CH_3)$ ₃ species

a The sum of covalent radii of X and C was obtained from Huheey, J. E., *Inorganic Chemistry,* 3rd ed., Harper and Row Publishers, Inc, 1983.

 ϕ E(a) denotes the energy of the occupied σ -type MO of XMe₃ with a symmetry (C_{3v}).

 $E(\mathbf{e})$ denotes the energy of the occupied π -type MO of XMe₃ with e symmetry (C_{3v}) .

 ${}^{d}E(e^*)$ denotes the energy of the unoccupied π -type MO of XMe₃ with e^* symmetry (C_{3v}) .

- 2. Okuno, M., Kita, M., Kashiwabara, K. and 8. Fujita, J., *Chem. Lett.,* 1989, 1643.
- 3. Ouyang, Y., Kojima, M. and Fujita, J., *Bull. Chem. Soc. Jpn,* 1984, 57, 3574.
- 4. Kashiwabara, K., Kinoshita, I., Ito, T., Fujita, J., Shibata, M., *Bull. Chem. Soc. Jpn,* 1982, 55, 9. 725.
- 5. Kashiwabara, K., Katoh, K., Ohishi, T. and Fujita, J., *Bull. Chem. Soc. Jpn,* 1982, 55, 149.
- 6. Nemoto, K., Kita, M., Kojima, M. and Fujita, J., *Bull. Chem. Soc. Jpn, 1989, 62, 1517.*
- 7. lwata, K., Kojima, M. and Fujita, J., *Bull. Chem. Soc. Jpn,* 1985, 58, 3003.
- 8. Mulliken (version 1.1.1), IBM and CAChe Scientific, 1994. The calculations were carried out on an SGI workstation (Indigo) at the Information Processing Center of the Naruto University of Education.
- 9. Kita, M., Okuyama, A., Kashiwabara, K. and Fujita, J., *Bull. Chem. Soc. Jpn,* 1990, 63, 1994.
- 10. Kinoshita, I., Kashiwabara, K., Fujita, J., Matsumoto, K. and Ooi, S., *Bull. Chem. Soc. Jpn*, 1981, 54, 2683.
- Ohishi, T., Kashiwabara, K. and Fujita, J., *Bull. Chem. Soc. Jpn,* 1983, 56, 3441.
- Gillespie, R. J., *Chem. Soc. Rer.,* 1992, 59.